Closing Today: $\quad 2.1,2.2,2.3$
Closing Tuesday: 2.5-6
Closing next Fri: 2.7, 2.7-8
Extended office hours today 1:30-3pm in Com. B-006 (next to MSC)

Entry Task: From HW, evaluate:

1. $\lim _{t \rightarrow \pi / 2}\left[\frac{\sin (t)+\sqrt{\sin ^{2}(t)+3 \cos ^{2}(t)}}{2 \cos ^{2}(t)}\right]$
2. $\lim _{t \rightarrow \pi / 2}\left[\frac{\sin (t)-\sqrt{\sin ^{2}(t)+3 \cos ^{2}(t)}}{2 \sin ^{2}(t)}\right]$
3. $\lim _{t \rightarrow \pi / 2}\left[\frac{\sin (t)-\sqrt{\sin ^{2}(t)+3 \cos ^{2}(t)}}{2 \cos ^{2}(t)}\right]$

2.5 Continuity (continued...)

A function, $f(x)$, is continuous at $\mathbf{x}=\mathbf{a}$ if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

i.e. the following must be equal:
(i) $\lim _{x \rightarrow a^{-}} f(x)$
(ii) $\lim _{x \rightarrow a^{+}} f(x)$
(iii) $f(a)$

Example: Find the value of c that makes the function continuous everywhere:

$$
f(x)=\left\{\begin{array}{cc}
\frac{(x+1)^{2}-16}{x-3} & , \text { if } x<3 \\
2 x^{2}+c & , \text { if } x \geq 3
\end{array}\right.
$$

$f(x)$

Example:

$$
h(x)=\left\{\begin{array}{cc}
a x^{2}+6 & , \text { if } x<1 \\
b & \text {, if } x=1 \\
\frac{x+49}{x+a} & , \text { if } x>1
\end{array}\right.
$$

Find the values of a and b that will make $h(x)$ continuous everywhere.
$h(x)$

For 8 more continuity problems like these, see my online practice sheet: "Continuity Practice Problems" (There are posted solutions as well).

Theorem:

If $f(x)$ is continuous at $x=b$, and

$$
\lim _{x \rightarrow a} g(x)=b
$$

then

$$
\lim _{x \rightarrow a} f(g(x))=f(b)
$$

Example:

Find

$$
\lim _{x \rightarrow 9} \ln \left(\frac{\sqrt{x}-3}{x-9}\right)
$$

2.6 Limits "at" Infinity

(Horizontal Asymptotes)

Goal: Study "long term" behavior.

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

"the limit of $f(x)$, as x goes to infinity is L ", as x takes on larger and larger positive numbers, $y=f(x)$ takes on values closer and closer to L.
Similarly,

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

"the limit of $f(x)$, as x goes to negative infinity is L ".

Important limits to know:

1. For any positive number n,
$\lim _{x \rightarrow \infty} x^{-n}=\lim _{x \rightarrow \infty} \frac{1}{x^{n}}=0$.
$\lim _{x \rightarrow-\infty} x^{-n}=\lim _{x \rightarrow-\infty} \frac{1}{x^{n}}=0$.
(if defined)
2. $\lim _{x \rightarrow \infty} e^{x}=\infty \quad$ and $\lim _{x \rightarrow \infty} e^{-x}=0$.
$\lim _{x \rightarrow-\infty} e^{x}=0 \quad$ and $\lim _{x \rightarrow-\infty} e^{-x}=\infty$

$$
\begin{aligned}
& \text { 4. } \lim _{x \rightarrow \infty} \tan ^{-1}(x)=\frac{\pi}{2} \\
& \lim _{x \rightarrow-\infty} \tan ^{-1}(x)=-\frac{\pi}{2}
\end{aligned}
$$

Strategies to compute $\lim _{x \rightarrow \infty} f(x)$

1. Is it a standard one from my list on the last page?
If so, done. If not, go to next step.
2. Combine into one fraction.
3. Use algebra to rewrite in terms of known limits from previous page:
Strategy 1: Multiply top/bot by $\frac{1}{x^{a^{\prime}}}$
4. $\lim _{x \rightarrow \infty}\left(\frac{x}{x+2}-\frac{1}{x}\right)$ where a is the largest power.
Strategy 2: Multiply top/bot by $\frac{1}{e^{r x}}$.

Examples:

1. $\lim _{x \rightarrow \infty} \frac{3+x^{4}-x}{4 x^{2}+1-6 x^{4}}$
2. $\lim _{x \rightarrow \infty} \frac{3+5 e^{(2 x)}}{2 e^{x}+4 e^{(2 x)}}$
3. $\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}-x+1}}{2 x^{3}-x^{2}}$

Note: $\sqrt{x^{2}}=x$, if $x \geq 0$, and
$\sqrt{x^{2}}=-x$, if $x<0$.
4. $\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{6}-x+1}}{2 x^{3}-x^{2}}$
5. $\lim _{x \rightarrow \infty}\left(\sqrt{3+2 x+x^{2}}-x\right)$

Special note: If given two fractions, combine them (common denom).

Try plugging in the value:

1. If denominator $\neq \mathbf{0}$, done!
2. If denom $=0$ \& numerator $\neq 0$, the answer is $-\infty,+\infty$ or DNE. Examine the sign of the output from each side.
3. If denom = $\mathbf{0}$ \& numerator = $\mathbf{0}$,

Use algebra to simplify and cancel until either the numerator or denominator is not zero.

Strategy 1: Factor/Cancel
Strategy 2: Simplify Fractions Strategy 3: Expand/Simplify Strategy 4: Multiply by Conjugate (if you see radicals)

Special note: Combine into one fraction (might need conjugate if given two terms involving a radical).

1. Is it a known limit?

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{1}{x^{a}}=0, \text { if } a>0 ; \lim _{x \rightarrow \infty} e^{-x}=0 ; \\
& \lim _{x \rightarrow \infty} \ln (x)=\infty ; \lim _{x \rightarrow \infty} \tan ^{-1}(x)=\frac{\pi}{2}
\end{aligned}
$$

2. Rewrite in terms of known limits:

Strategy 1: Multiply top/bottom by $\frac{1}{x^{a}}$, where a is the largest power.
Strategy 2: Multiply top/bottom by $\mathrm{e}^{-\mathrm{rx}}$.
Special note:
If x is positive, then $x=\sqrt{x^{2}}$.
If x is negative, then $x=-\sqrt{x^{2}}$.

